Acid detergent lignin, lodging resistance index, and expression of the caffeic acid O-methyltransferase gene in brown midrib-12 sudangrass

نویسندگان

  • Yuan Li
  • Guibo Liu
  • Jun Li
  • Yongliang You
  • Haiming Zhao
  • Huan Liang
  • Peisheng Mao
چکیده

Understanding the relationship between acid detergent lignin (ADL) and lodging resistance index (LRI) is essential for breeding new varieties of brown midrib (bmr) sudangrass (Sorghum sudanense (Piper) Stapf.). In this study, bmr-12 near isogenic lines and their wild-types obtained by back cross breeding were used to compare relevant forage yield and quality traits, and to analyze expression of the caffeic acid O-methyltransferase (COMT) gene using quantitative real time-PCR. The research showed that the mean ADL content of bmr-12 mutants (20.94 g kg(-1)) was significantly (P < 0.05) lower than measured in N-12 lines (43.45 g kg(-1)), whereas the LRI of bmr-12 mutants (0.29) was significantly (P < 0.05) higher than in N-12 lines (0.22). There was no significant correlation between the two indexes in bmr-12 materials (r = -0.44, P > 0.05). Sequence comparison of the COMT gene revealed two point mutations present in bmr-12 but not in the wild-type, the second mutation changed amino acid 129 of the protein from Gln (CAG) to a stop codon (UAG). The relative expression level of COMT gene was significantly reduced, which likely led to the decreased ADL content observed in the bmr-12 mutant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance

Stem lodging-resistance is an important phenotype in crop production. In the present study, the expression of the wheat COMT gene (TaCM) was determined in basal second internodes of lodging-resistant (H4564) and lodging-susceptible (C6001) cultivars at stem elongation, heading, and milky endosperm corresponding to Zadoks stages Z37, Z60, and Z75, respectively. The TaCM protein levels were analy...

متن کامل

Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon

BACKGROUND Lignin is a significant barrier in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired CAD or COMT activity have attracted considerable agronomic interest for their altered lign...

متن کامل

Identification and Characterization of Four Missense Mutations in <i>Brown midrib</i> 12 (<i>Bmr12</i>), the Caffeic <i>O</i>-Methyltranferase (COMT) of Sorghum

Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O-methyltransferase, which catalyzes the penultimate step in monolignol biosynthesis. From an EMS-mutagenized TILLING ...

متن کامل

Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues

Brown midrib mutants have been isolated in maize (Zea mays), sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) arising by either spontaneous or chemical mutagenesis. The characteristic brown coloration of the leaf mid veins is associated with reduced lignin content and altered lignin composition, traits useful to improve forage digestibility for livestock. Brown midrib phenotype i...

متن کامل

Cloning and Phylogenetic Analysis of Brassica napus L. Caffeic Acid O-Methyltransferase 1 Gene Family and Its Expression Pattern under Drought Stress

For many plants, regulating lignin content and composition to improve lodging resistance is a crucial issue. Caffeic acid O-methyltransferase (COMT) is a lignin monomer-specific enzyme that controls S subunit synthesis in plant vascular cell walls. Here, we identified 12 BnCOMT1 gene homologues, namely BnCOMT1-1 to BnCOMT1-12. Ten of 12 genes were composed of four highly conserved exons and thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2015